ESTIMATIVAS DE NÍVEIS DE OBESIDADE UTILIZANDO MACHINE LEARNING
EXPLORANDO FATORES CONTRIBUTIVOS E MODELOS PREDITIVOS PARA A PREVENÇÃO E INTERVENÇÃO NA OBESIDADE
Keywords:
Machine Learning, obesity, predictive models, unsupervised learning, Artificial intelligenceAbstract
This article explores the use of advanced machine learning techniques to estimate obesity levels based on demographic data, eating habits and physical condition of individuals from Mexico, Peru and Colombia. Using a robust and diverse dataset, the study employs algorithms such as logistic regression, decision trees and neural networks to develop predictive models. Analysis includes everything from data preparation to evaluating the effectiveness of models, providing valuable insights for public health interventions and policies aimed at preventing and treating obesity.Additional Files
Published
2024-09-09
Issue
Section
Artigos
License
Copyright (c) 2024 Revista Científica da UNIFENAS - ISSN: 2596-3481
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Clique no link abaixo para fazer download do arquivo de Declaração de Direitos Autorais. Preencha seus campos, com as respectivas assinaturas dos autores no formato de imagens e o insira como arquivo suplementar em sua submissão.
Declaração de responsabilidade e transferência de direitos autorais